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An averaging procedure is established for systems with a variable number 
of degrees of freedom which arise when considering vibrocollisional 
oscillations with zero velocity restitution coefficient. Compared with 
the method of staged integration /I, 2/ the approach presented, 
associated with non-analytical changes in the variables 13, 41, widens 
the class of systems that can be considered. Unlike the classical 
averaging method /5-71 there is a reduction in the degenerate degrees of 
freedom because of the specific degeneracy of the problem. 

1. Consider a system described over certain times by differential relations, and at 
other times interval by differential and finite relations of the following form: 

Here M =&f(t) is a 2n-periodic piecewise-constant function (see Fig.1); here and 
throughout n = 0,1,2,.... 

WB take X and Y to be bounded 2n-periodic finite-dimensional vector functions satisfying 
Lipschitz conditions on their first and second arguments, C is a bounded vector function with 
bounded partial derivatives with respect to the first argument and # is a small parameter. 

The vector function y(t) is a solution of an infinite sequence of systems of dif- 
ferential equations, each of which acts in the time interval 2an<t<2n (nf i), after which 
new initial conditions are imposed. 

Together with system (1.1) we consider the averaged equations 

Under the given conditions we formulate the following theorem. 

Theorem. If the solution of system (1.21 is given in a time interval of the order of 
i/p, then 

IIs--%tl<Q, IIYM-nMII<C,p 0.3) 

during that time interval, and the constants C1 and C, remain bounded as p+ 0. 
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Proof. We redefine system (1.1) in the domain where Af =O: 

(1.4) 

Y,’ = WY 19, of, t, p) -I- 2PH @l, Y1r II) (1 - M) 

Y, (2nd = G (x @n& t-4, 2; ‘$2 = G, 

Here H 6% I/I, EL) is an arbitrary bounded function satisfying the Lipschits condition. 
It will be specified later. Because of the uniqueness of the solution of the Cauchy problem 
.ri ma x and y&a= yM. 

We will apply the averaging method procedure to system (1.4). We perform a pointwise 
change of variables 

Tl = %* + EL& Y1 = 71* + cc" (1.5) 

where 16 and V are periodic functions of &,q*,t and n whose averages vanish. We will assume 
that the functions X, Y and H satisfy Lipschitz conditions and choose functions u and v 

as follows: 

u = s IX (%*,n*M, t, p) - El tit 

v = s [Y (%,, qrM, t, p) - ‘PI dt + 24 I’/9 - Ml dt 

s = s (E*, q*, P) = <x (%*. 9&f, t, Id> 

y = y (%*v 9+. P) = <y (%*v rla, t, a)> 

where integration is performed with respect to the explicitly appearing time over the interval 
it,, t1. 

We will now use the arbitrariness of the function B(%,,n*,p) and set 

H (%*,n*, p) = @G (%,* Ala%*) 8 - VJ 

We then obtain 

I*' = $E + $0 V), rl*‘ = p @g/a%,) 8 -I- $0 if) 

rl* (2sn) = G (E, &u& IL) t PO (1) 

0.6) 

Hence, there follow the equations 

11 ** = G' (%*, 1~) + $0 (11, '1* (2nn) = G (%, (234, p) + PC’ (1) (1.7) 

which are a sequence o.f systems of differential equations, each of which acts over a time 
interval 2nn < t< 2n(n + 1) and has its own initial conditions. Integrating system (1.7) 
using the finiteness of each interval, we bbtain the relation 

n* = G (%** IL) + PO (1) U.8) 
valid for all times. 

Substituting expression (1.8) into the first equation of system (1.6) and using the fact 
that the function s also satisfies Lipschits conditions, we arrive at the final form of 
the equations 

System (1.9) is fully equivalent to system (1.4) over any time interval. 
Considering system (1.2) alongside system (l-9), with the help of Gronwall's Lemma we 

obtain the required estimates (1.3) over a time interval of the order of if& 

Remcrrk lo. If the functions X, Y and G are continuous at Q-O, then the system 

%o' = @ (L no. O), tlo = G 6,. 01, t (0) = so 

preserves the same asymptotic accuracy. 
2O. The above discussion remains valid if the function M consists of a finite number of 

isolated impulses of arbitrary fixed length in the interval O<r<2=. 

Fig.1 Fig.2 
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2. We consider a more complicated problem: 

5’ = px, Y’M, = pYM,, Z’M, = (1 + pZ) Ml, ‘p’ = 1 + @ 

Y (4,) = G (3 0,)) + pG1 b (&A ‘p (&A 14 
cp (GJ = 2.m + PF b (t,), cp O”), I4 

z (t,) = nn, 2 (0) = x0, M, = M, (2, a) 

(2.1) 

Here x and y are, as before, vector functions of arbitrary finite dimensions, s and cp 
are scalar phases, X, Y, Z and Q, are functions depending on arguments z, yM,,cp,zM, and 
p, @,G,F and Z are bounded functions, and furthermore F(x,cp,p) has bounded partial 
derivatives with respect to its first two arguments; the requirements on the functions X, Y 
and G are the same as in system (1.1). 

The function Ml(z,a) is shown on Fig.2: the switchover point & may depend on slow 
variables. 

We introduce a new phase 'pr = cp - pF and a slow variable 0 = z - 'pl. We then change to 
the phase 

nn<cp,<nn+a-0 

88 = 

to which there corresponds a discontinuous frequency 

and considering 'pa to be an independent variable, we obtain the system 

(2.2) 

to which one can apply the theorem that has been proved. 

3. Equations of the form (2.1) appear naturally in considerations of oscillations of 
vibrocollisonal systems with vanishing velocity restitution coefficients during a collision, 
if one restricts oneself to periodic motion regimes with contact zones and uses the approach 
of /3, 4/ associated with non-analytic changes of variables. As an example we consider the 
simplest vibrocollisional system with a two-sided restriction and kinematic excitation, shown 
in Fig.3 @a - d1 = 22). 

Its equations of motion have the form 

8” = -k’ (4 - p)s + k*p (1 - p)r + k% (1 - p) sin cot 

T.' = -I k's - k+r - k&z sin mt, ( r 1 < 1 

0, Irl=l 
r= fl, s= pr+ a sin ot, s’= 0 _. 

(3.1) 

(3.2) 



Here s is the coordinate of the centre of mass of the system, r is the relative coordi- 

nate of the body of mass MO in the gap, k= I/c= is the frequency of free oscillations 
of the body of mass Jf*,~r- ml(~~-l- m) and di are small parameters of single order. Con- 
ditions (3.2) are separation conditions (the transition from the stage of joint motion to 

separate motion). 
We now change to new phase variables with the aid of the following non-analytical 

transformation, which for a regime with contact zones and two collisions in one oscillation 
period of the yoke ensures exact satisfaction of the collision conditions: 

s=AsinQ,s'=AkcosQ,n=ot 
P= I (sign (sin cp) - &&+ {-n + B (o - n [p/fill -A sin+%) Mn 
r' = k {B -A ~~~M*}~*, Mz = Mn (~,a) = ~~(~,u)sign (sin (p) 

Here Id is the integer part of Z and the auxiliary slow variable TV js defined by the 
transcendental equation 

Ba-AsinQ=21 when 'P=rr 

We will consider the most interesting resonant case o-k= kA, where A is a small par- 
ameter of order u. Introducing the slow variable a= G-Q and the dimenionless time r = kt 
and restricting ourselves to terms of order n, 

, 
we obtain a system in the form (2.1): 

A’ = ‘/apA sin 2Q + yr c0sQ i_ a sin(Q + 0)cosg 
a' = A i- or. sinZIp $ wrAR-’ sinQ -I- aA-'sin (II, -+ (J) sing 

B'Ms (~,a) = p.4 sinQ MP,' (v, a) 
(P'M~ (cp, a) = (1 - p (cp - n lcpinl)AB-'sin* MS (rp,a))Ma (cp, a) 

$' = i - p sin** - prA-' sinQ - aA-' sin (9 + o)sinQ 

with separation conditions 
'P = x)1, B -= A + p20 (1), g = nn + ~0 (1) 

Averaging over the fast phase Q with the help of the procedures derived above and 
denoting differentiation with respect to Q by a prime, we arrive at the equations of the 
first approximation 

AX = Rzc-I{---21&a, -A,@, sin a, + DOSC+ - 1)- 'isA, sinSa,} + 
%a sin o,, 

(3.3) 
$1' = A -I- I&R + pin {22/A, COSC+ - a, Rosa, + sina, - 

%a, i- "Ia sin Za,} + %aA,cos o;, a, - sina, = ZZA,+ 

Eqs.(3.3) are true for times of the order of f/p with errors of the order of p. Setting 
the right-hand sides of (3.3) equal to zero, we obtain a system of transcendental equations 
governing the stationary resonant regime. 

Fig.3 shows the dependence of the resonant amplitude of the centre of mass A, on the 
wave selection A for ~=0.01 and all=o.Of. Here it is necessary to take into account the 
condition for realizing the simplest vibrocollisional regime with contact zone that we are 
considering: O<a,<n;the existence of the given resonsant regime is ensured when the 
inequalities 

p < dal(81), 1 A I < nal(41) 

are satisfied. 
A similar approach can also be used when considering more-complex problems which taking 

into account the non-linearity of the oscillation exciter. 

The author thanks I.I. Blekhman, R-F. Nagayev and A.V. Pechenev for their remarks and 
for their interest. 
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